				_
Write the eccentricity-based	definition	of a conic	(from sectio	n 10.9).

SCORE: _____/ 7 PTS

A CONIC IS THE LOCUS OF POINTS IN THE PLANE WHOSE DISTANCES TO A FIXED POINT (FOCUS) AND A FIXED LINE (DIRECTRIX) HAVE A CONSTANT RATTO (ECCENTRICITY)

Chris's house is 2 miles from Hunter Street (which is a straight road). There is a road in Chris's town such that, SCORE: no matter where you are on road, your distance from Hunter Street is twice your distance from Chris' house. What is the shape of that road?

FILL IN THE BLANKS.

SCORE: ____/ 10 PTS

- The asymptotes of a hyperbola intersect at the CENTER of the hyperbola. [a]
- The line through the focus and vertex of a parabola is called the AXIS OF SYMMETRY [6]
- The concept of ECCENTRICITY is used to measure the ovalness of an ellipse. [c]
- A/An HYPERBOLA is the locus of points whose distances to two fixed points differ by a fixed constant. [d]

Consider the graph of the polar equation $r^3 = 1 + \cos 2\theta$.

SCORE: ____/ 20 PTS

Determine whether the graph is symmetric with respect to the pole, the polar axis, and $\theta = \frac{\pi}{2}$. [a]

$$r^3 = 1 + \cos 2(-\theta)$$

$$r^3 = 1 + \cos(-20)$$

SYMMETRIC

POLE:

$$(\Gamma, \pi + \Theta)$$
 $\Gamma^3 = 1 + \cos 2(\pi + \Theta)$

$$\Gamma^{3} = 1 + \cos(2\pi + 2\theta)$$

ALSO SYMMETRIC OVER 0=#

What is the minimum interval for heta that you would need to plot points before using symmetry to finish drawing the graph ? [b]

O. 亚(

Find the standard form of the equation of the parabola with focus (-3, 7) and directrix x = 13.

VEDITEX =
$$(-3+\frac{13}{2}, 7) = (5,7)$$

 $P = -3-5=-8$
 $(y-7)^2 = 4(-8)(x-5)$
 $(y-7)^2 = -32(x-5)$

Convert the polar equation $r = \frac{3}{1 + 2\sin\theta}$ to rectangular form.

SCORE: _____ / 15 PTS

NOTE: You do NOT need to write your final answer in standard form, but any like terms must be simplified.

$$r+2r \le m\Theta = 3$$

$$r+2y = 3$$

$$r=3-2y$$

$$r^{2}=9-12y+4y^{2}$$

$$x^{2}+y^{2}=9-12y+4y^{2}$$

 $x^2 - 3y^2 + 12y - 9 = 0$

Consider the conic with the equation $3x^2 + 2y^2 - 6x + 8y - 1 = 0$.

SCORE: _____ / 25 PTS

[a] Find the co-ordinates of the focus/foci.

$$3(x^{2}-2x+1)+2(y^{2}+4y+4)=1+3+8$$

$$3(x-1)^{2}+2(y+2)^{2}=12$$

$$(x-1)^{2}+(y+2)^{2}=1 \quad \text{CENTER}=(1,-2)$$

$$4+c^{2}=6$$

$$c=2 \qquad \text{Foc} 1=(1,-2\pm\sqrt{2})$$

$$c=\sqrt{2}$$

[b] If the conic is a circle, find the radius.
If the conic is a parabola, find the equation of the directrix.
If the conic is an ellipse, find the endpoints of the minor axis.
If the conic is a hyperbola, find the equations of the asymptotes.

$$b^2 = 4 \rightarrow b = 2$$

ENDPOINTS OF MINDR AXIS = $(1\pm 2, -2)$
= $(-1, -2)$, $(3, -2)$

Find the standard form of the equation of the hyperbola with foci $(0, \pm 4)$ and asymptotes $y = \pm 2x$.

SCORE: _____ / 20 PTS

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

$$\frac{y^2}{\frac{64}{5}} - \frac{x^2}{\frac{16}{5}} = 1$$

Consider the polar equation $r = \frac{10}{2 - 3\cos\theta}$.

SCORE: ____/ 30 PTS

[a] What is the shape of the graph of the equation?

$$r = \frac{10 \cdot \pm}{\frac{1}{2}(2-3\cos\theta)} = \frac{5}{1-\frac{3}{2}\cos\theta}$$

[b] Find the equation of the directrix.

[c] Find the rectangular coordinates of all intercepts of the graph. NOTE: Do NOT convert the equation to rectangular form.

[d] Find the <u>rectangular</u> coordinates of the center of the graph. <u>NOTE: Do NOT convert the equation to rectangular form.</u>

$$\left(\frac{-10+2}{2},0\right)=\left(-6,0\right)$$